
J .  Fluid Mech. (1995), vol. 298, pp. 193-210 
Copyright 0 1995 Cambridge University Press 

193 

Resistance functions for spherical particles, 
droplets and bubbles in cylindrical tubes 

By J. J. L. HIGDON AND G. P. MULDOWNEYT 
Department of Chemical Engineering, University of Illinois, Urbana, IL 61801, USA 

(Received 14 September 1994 and in revised form 6 April 1995) 

Numerical computations are performed to evaluate the resistance functions for low 
Reynolds number flow past spherical particles, droplets and bubbles in cylindrical 
domains. Spheres of arbitrary radius a and radial position b move with arbitrary 
velocity U within a cylinder of radius R. The undisturbed fluid may be at rest, or 
subject to a pressure-driven flow with maximum velocity U,. The spectral boundary 
element method is employed to compute the resistance force for torque-free bodies in 
three cases: rigid solids, fluid droplets with viscosity ratio h = 1, and bubbles with 
viscosity ratio h = 0. A lubrication theory is developed to predict the limiting resistance 
of bodies near contact with the cylinder walls. Compact algebraic expressions are 
developed which accurately represent the numerical data over the entire range of 
particle positions 0 < b/(R-a)  < 1 for all particle sizes in the range 0 < a /R  < 0.9. 
The resistance functions are consistent with known analytical results and are presented 
in a form suitable for further studies of particle migration in cylindrical vessels. 

1. Introduction 
Low Reynolds number flow past spherical particles in cylindrical vessels is 

encountered in many areas of engineering application. Common examples include 
falling ball rheometers, hydrodynamic chromatography, membrane transport and 
particle transport in pipes. In other applications associated with liquid droplets or gas 
bubbles in capillary tubes, the sphere/cylinder geometry represents the appropriate 
model in the limit of strong surface tension. Owing to the technical importance of these 
applications, the motion of spherical particles in tubes has received much attention in 
the fluid dynamics literature. Early work in this area has been summarized by Happel 
& Brenner (1965), while a more recent survey is given by Hirschfeld, Brenner & Falade 
(1984). In the light of these works and additional reviews cited by Hirschfeld et al., 
we shall not attempt a comprehensive literature survey, but limit our review to those 
contributions which set the context for the present effort. 

We consider a spherical particle of radius a whose centre lies a distance b from the 
axis of a cylinder of radius R.  In general, we suppose that the particle may move with 
velocity U in an arbitrary direction, while the undisturbed fluid may be subject to a 
pressure-driven flow with parabolic profile and maximum velocity U,. Previous studies 
of this problem have addressed a number of special cases involving asymptotic limits 
with respect to particle size or position. Early work reviewed by Happel & Brenner 
employed the method of reflections, harmonic expansions and similar techniques to 
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calculate the resistance of small particles where a / R  4 1. These calculations include 
results for arbitrary position b /R  as long as the particle remains far from the wall, 
R-  b + a. Complementary results for liquid droplets and bubbles with small a /R  have 
been given by Hetsroni, Haber & Wacholder (1970). For axisymmetric geometries, 
Happel & Brenner cite results for large particles with radii up to a /R  = 0.8. Later 
authors (Coutanceau & Thizon 1981) have noted some inaccuracy in these results for 
the largest particle sizes and have provided more accurate results in such cases. 

In the studies cited above, the analysis was limited to particle motion parallel to the 
cylinder axis. The general problem of a small particle moving with arbitrary velocity 
at an arbitrary position was addressed by Hasimoto (1976) and Liron & Shahar (1978). 
These analyses, for a Stokeslet singularity in a cylindrical tube, provide a solution for 
small particles to O(a/R). While Hasimoto and Liron & Shahar presented their results 
in graphical form, Hirschfeld et al. (1984) revisited this problem and gave an 
extensive numerical tabulation of results for arbitrary positions. Falade & Brenner 
(1985) developed simple analytical expressions for these results in the asymptotic 
regime for particles close to the boundary but outside the lubrication regime, i.e. 
a / R  << 1, a << R-b << R. The mathematical analysis for translating particles may be 
extended to the complementary problem of a rotating sphere in a cylindrical domain. 
Comprehensive results for this problem including a detailed comparison with previous 
work are given by Zheng, Powell & Strove (1992). 

The small particle restriction for non-axisymmetric configurations has been 
addressed by a number of authors in recent years. Tozeren (1982, 1983) presented a 
solution for finite size particles as a perturbation expansion, valid for particles near 
the cylinder axis, b / R  << 1. At the other extreme, Cox (1974) developed a general 
lubrication theory for solid surfaces near contact and included specific results for 
sphere/cylinder geometries. The analyses of both Tozeren and Cox break down in the 
limit as the particle radius approaches the cylinder radius, a / R  + 1. This limit, for a 
tightly fitting particle, has been studied by Bungay & Brenner (1973). 

Despite the volume of research devoted to particle and droplet motion in cylindrical 
domains, there has been no complete solution valid for finite size particles moving with 
arbitrary velocity at arbitrary positions in the cylinder. In the present effort, we seek 
to address this deficiency through a comprehensive program of numerical compu- 
tations. We include results for particle sizes up to a / R  = 0.9 which are valid for all 
positions from the cylinder axis to the near contact lubrication regime. We consider 
translational velocities along each of the three coordinate axes as well as the effects of 
a mean pressure-driven flow. Results are presented for solid particles and for fluid 
droplets with relative viscosities of 0 and 1. 

In the compilation of our results, the resistance force for each particle is given as an 
algebraic expression whose functional form is determined from known analytical 
results. The numerical coefficients are obtained from the detailed computational results 
together with known asymptotic limits. In this effort, we have followed the spirit of 
Jeffrey & Onishi (1984) who developed similar expressions for the resistance and 
mobility functions for the exterior problem of two spheres. By presenting our results 
in this form, we hope to facilitate the use of these results in future computations for 
engineering applications. 

2. Formulation 
We consider a spherical body of radius a whose centre lies a distance b from the axis 

of a circular cylinder of radius R. We choose a coordinate system with the z-axis along 
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FIGURE 1. Coordinate system and geometry for a spherical particle in a cylindrical domain. 

the axis of the cylinder, and choose the x-axis such that sphere is centred on the point 
x, = (b,O,O) (figure 1). 

The governing equations are the Stokes equations for low Reynolds number flow 
together with the continuity equation, 

- V p + p V u  = 0,  

v - u  = 0. 

The boundary condition far from the sphere is given by 

where the undisturbed velocity is a parabolic pressure-driven flow 

and r2 = x 2 + y 2 .  
The no-slip boundary condition on the cylinder walls yields 

u = O  on r = R .  ( 5 )  

For a solid particle, we assume that the sphere translates with velocity U and rotates 
with angular velocity 9. The no-slip boundary conditions on the sphere are then 

u = U + D x ( x - x , )  on Ix-x,I = a. (6) 

For a fluid droplet, we assume that the droplet has viscosity Ap and surface tension 
y.  We consider the asymptotic limit as the capillary number Cu = p U / y  + 0 and 
assume that the droplet maintains a spherical shape. The boundary conditions on the 
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sphere are the no-penetration condition for the normal velocity together with the 
continuity of shear stress across the interface. For a droplet translating with velocity 
U, this yields 

Heref= 0 - n  and subscripts 1 and 2 refer to the interior and exterior of the drop 
respectively; n is the unit normal vector pointing out of the sphere. 

u - n  = U-n ,  (f,-f,).(/-nn) = 0 on Ix-xJ = a. (7) 

The force and torque on the sphere are given by 

F =  fdS, T =  (x-x,)xfdS, (8), (9) s,. 1% 
where the integration extends over the surface of the sphere S,. 

specified, and we require that the torque on the body is zero: 
For both solid and fluid spheres, we assume that the translation velocity U is 

T = O .  (10) 

With these boundary conditions, we have a well-posed boundary value problem for 
the Stokes equations in the sphere/cylinder domain. This problem may be solved to 
determine the force on the particle F as a function of the prescribed velocities U and 
U,. Owing to the linearity of the Stokes equations and the symmetries in the 
geometry, the force may be expressed in terms of resistance coefficients R defined by 

(1 1) 

The numerical coefficient C is chosen such that the resistance coefficients ap- 
proach 1 as the particle size approaches 0. Thus C = 67~ for solid particles and C = 
47~ (1 +:A) /( 1 + A )  for fluid droplets. The four resistance coefficients R,, R,, R,, 
R ,  are dimensionless quantities which are functions of particle size a / R  and position 
b/R and for liquid droplets of viscosity ratio A. 

The boundary value problems described above may be solved by the boundary 
integral method. The boundary integral method for Stokes flow is based on the integral 
formula 

R, 0 

[ 3 = C P  [; 2 ;] [3 + C P [ R , l  [ 9 

where S and T are defined by 

f = x - x, and the unit normal vector n points into the suspending fluid. 
This integral formula expresses the velocity at a point x, on the boundary of the fluid 

as an integral of the velocity and stress over the boundary. The surface of integration 
extends over the entire boundary of the fluid, which includes the sphere surface S, as 
well as the outer boundary S,. Details concerning the derivation of this equation may 
be found in recent monographs by Pozrikidis (1992) and Kim & Karilla (1991). 

For fluid droplets, one may write equations of the form (12) for the interior and 
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exterior of the droplet. Combining the two results with the continuity of velocity and 
shear stress across the interface leads to equations 

-LJ ( s ik~f i -  
47v s, 

for points xo on the outer boundary S,  and on the sphere Ss respectively. 
These equations, (12) for a solid particle and (1 5), (16) for a fluid particle, represent 

the foundation of the boundary integral method for Stokes flow. When combined with 
the appropriate boundary conditions, they yield a Fredholm integral equation for the 
unknown velocities and stresses on the boundary surface. For a solid particle, the no- 
slip boundary conditions prescribe the velocity on the particle surface, and the 
unknowns are the surface stresses$ For the fluid particles, the boundary conditions 
prescribe the normal velocity and the shear stresses, while the unknowns are the jump 
in normal stress and the tangential components of velocity. 

In the integral equations formulated above, the domain of integration on the surface 
S ,  extends over the range - co < z < 00. This infinite domain proves inconvenient for 
numerical computations, and we truncate the domain at planes z = & L. The new 
boundary surface SB now includes the cylinder walls (r = R, - L < z < L)  as well as 
the ends { z  = & L, 0 < r < R}. The no-slip boundary condition on the cylinder wall 
remains the same, ( 5 ) ;  however, we require a boundary condition on the ends of the 
cylinder. The simplest choice would be to set u = urn on the ends which guarantees the 
correct behaviour in the limit as L+ co. The difficulty with the velocity boundary 
condition is that it requires a large value of L before the limiting behaviour is reached. 

In place of the velocity condition, we choose stress boundary conditions on the ends 
of the cylinder, in the form 

f ,= f2 ,  f ,=f ; ,  f , = k p ,  at z = 1 L .  (17) 

Here f ;  and f; represent the shear stress associated with the parabolic velocity field 
urn, i.e. a shear stress which increases linearly with r. The constant po in the normal 
stress f ,  is unknown a priori, but is determined from the constraint that the total 
volume flow rate match that of the undisturbed velocity field urn. With the stress 
boundary conditions, the solution assumes the correct limit as L + 00 and approaches 
this limit more rapidly than the solution with velocity boundary conditions. 

The boundary conditions (1 7) complete the specification of the integral equations for 
the Stokes equations. 

3. Numerical algorithms 
In this paper, we solve the boundary integral equations via a high-order discretization 

using the spectral boundary element method. In this approach, the boundary geometry 
is divided into a moderate number of macroelements, and all variables including the 
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geometry x and the physical variables u, f are discretized as Lagrangian interpolants 
in terms of two parametric variables 5 and 7. The base points (ti, r j )  for the 
interpolations are chosen as the zero of Legendre polynomials leading to interpolants 
which are equivalent to products of orthogonal polynomials. Convergence of the 
numerical discretization is achieved by increasing the order of the polynomial for a 
fixed set of elements. A detailed description of this algorithm is given in the 
accompanying paper by Muldowney & Higdon (1995). 

In the present implementation, we employed three discretizations involving a total 
of 18, 28 and 44 elements respectively. The smallest number of elements was employed 
for particles with a/R up to 0.7 located at positions away from the walls of the tube. 
The 28-element discretizations were employed for the larger particles, while 44 
elements were employed in extreme cases of near contact with gap/particle radius as 
small as 0.01. The maximum number of interpolating points in each variable ranged 
from ten points for the 18- and 28-element geometry to nine points for the 44-element 
case. Independent calculations were performed to compute each component of the 
resistance tensor R, except for R, which was determined at the same time as R,. Each 
of these independent calculations yields a boundary value problem with two planes of 
symmetry, yielding a four-fold reduction in the number of unknowns. All components 
of R could in fact be computed simultaneously, but the resultant loss of symmetry 
would require a significantly greater computational effort. The largest number of 
unknowns in any run was 2673 for a 44-element run with nine-point interpolants. The 
majority of runs employed far fewer unknowns. Computations were performed on 
IBM RS 6000/375 workstations and on an 8-processor Silicon Graphics Challenge. 
C.P.U. times on the IBM ranged from a few seconds to 5 min for the largest runs. 
Single-processor runs on the SGI required approximately twice as long, while 
multiprocessor run times decreased in a nearly linear fashion with number of 
processors. 

The interpolation points on the surface of the sphere were assigned by defining 
quadrilateral elements on the faces of a cube and projecting points from the centre to 
the sphere surface. Points on the cylinder walls were assigned at intervals of B and z ,  
while points on the ends were assigned at intervals of 0 and r .  Figure 2(a) illustrates 
the layout of elements on the cylinder and cube for an 18-element discretization. Figure 
2(b) illustrates the discretization for a sphere of radius n/R = 0.8 near contact with the 
wall. Within each element, lines of constant 6 and 7 are plotted at equal intervals for 
clarity. The actual nodal lines employ the non-uniform spacing associated with the 
zeros of Legendre polynomials. Note that the quadrilateral elements on the ends of the 
cylinder include degenerate cases in which the elements reduce to triangles at the centre 
of the cylinder. This mapping in no way limits the performance of the spectral element 
algorithm. Additional examples employing degenerate elements are presented in 
Muldowney & Higdon (1995). 

We begin our discussion of the numerical results with sample computations 
demonstrating the convergence of the spectral boundary element algorithm. The first 
series of computations shown in table 1 illustrates the convergence for an axisymmetric 
flow past particles of radius a/R = 0.1, 0.5, 0.9. For the two smaller particles, the 
resistance functions R, have converged with a relative error of 5 x lo-' with the 18- 
element discretization. By contrast, the 18-element results for a/R = 0.9 yield an error 
which is still of order 1.3 x at order N .  = 9. For these larger particles, the entire 
perimeter of the sphere at the plane z = 0 is near contact with the wall. Referring to 
figure 2(a), we see that the 18-element discretization employs a single element on each 
of the curve faces which places the near contact perimeter of the sphere along the centre 
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FIGURE 2. Discretization of geometry for spectral boundary element calculations. (a) Layout of 
element panels on cube and cylinder surfaces for 18-element discretization; points on the sphere are 
projected from the sphere centre to the surface of a cube. (b) Three-dimensional view of nodal lines 
for the panel layout of (a). 

N B  

4 
5 
6 
7 
8 
9 

10 

a / R  = 0.1 

0.000008 1 
- 0.002 7 149 

- 0.000005 8 
-0.0000243 
- 0.000 005 9 
-0.0000006 

1.263 2143 

a / R  = 0.5 

-0.0589805 
-0.002 5106 
-0.000553 1 
-0.0000290 
-0.0000058 

0.0000009 
5.947 375 3 

a / R  = 0.9 

287.6837 

56.1884 

5.6395 

469.8196 

- 55.8795 

-8.7406 

- 1.5502 

a / R  = 0.9 

2.8510 
-92.0239 

-0.6181 
-0.041 1 

0.0058 

469.2225 
- 0.0005 

TABLE 1. Error is resistance coefficient R, for rigid spheres of radius a centred in a cylinder of radius 
R. N ,  is the number of Lagrangian interpolation points in the spectral element discretization, and the 
last entry in each column is actual value of R,. The first three data columns are for 18-element 
discretization ; the final column for 28 elements. 

of an element. The spacing of nodes based on Legendre polynomials gives high 
resolution near the edges of elements, but stretches points away from the centre of the 
elements. This feature combined with the element layout on the cube leads to poor 
convergence for large particles. To correct this deficiency, a 28-element discretization 
is used which employs additional elements on each cube face and places the contact 
perimeter at the edge of an element. With this modification, table 1 shows that the 
a / R  = 0.9 computation converges to a relative accuracy of 1 x lop6. 
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a /R  = 0.1 a /R  = 0.5 a /R  = 0.9 NB 

5 34.727 40.443 146.2 
6 1.695 1.912 9.9 
7 0.095 -0.01 1 0.4 
8 0.029 0.037 0.2 
9 112.824 188.031 522.1 

TABLE 2. Error in resistance coefficient R, for rigid spheres of radius a in near contact with the wall 
of a cylinder of radius R. Gap size/particle radius = 0.01. The last entry in each column is actual 
value of R,. All results are for 44-element discretization. 

The next test case involves particles in near contact with the cylinder wall. Table 2 
illustrates the convergence of R, for particles of radius a / R  = 0.1, 0.5, 0.9 moving 
toward the wall. All calculations are for a gap equal to 0.01 of the particle radius with 
a 44-element discretization. This discretization includes additional smaller elements in 
the near contact region. In all cases, the resistance function R, has converged with a 
maximum relative error of 4 x 

A variety of additional convergence tests have been conducted for other 
combinations of the system parameters. In all cases, the converged results show a 
relative error which is less than or equal to the error of 4 x found for the near 
contact region. In addition to these convergence studies, additional tests were 
conducted to test the sensitivity of the results to the parameter L which is the half- 
length of the cylindrical domain. These tests show that a value of L = 3R is sufficient 
to guarantee agreement with the asymptotic limit L+ co with a maximum relative 
error of 2 x lop6 in the resistance functions R. Given this accuracy, all results reported 
in this paper were computed with L = 3R. The fact that such a modest length is 
sufficient for asymptotic behaviour is associated with the rapid decay for Stokeslet 
singularities in a cylindrical domain (Liron & Shahar 1978). 

4. Resistance functions for particles, droplets and bubbles 
The principal goal of this paper is to provide convenient and accurate representations 

of the resistance functions for particles, droplets and bubbles at all positions within a 
cylindrical domain. Toward this end, we evaluated the resistance functions for each of 
the particle sizes noted below ranging from a/R = 0.05 to 0.9. Computations were 
performed for a number of particle positions ranging from the centre of the cylinder 
(b/R = 0) to near contact with a ratio of gap size/particle radius = 0.01. For each 
particle size, 14 values of b /R  were chosen to cover the range 0 < b /R  < (1 - 1.2 a/R) 
where the upper limit guarantees a minimum gap/particle radius of 0.20. Ten 
additional values were chosen to cover the near contact region with gap/particle radius 
in the range 0.01 to 0.20. (The first group of computations were omitted for a / R  = 0.9 
since the entire range of b/R lies within the near contact regime.) The results of these 
computations were employed to generate a least-squares approximation for each 
resistance function as described below. For brevity, we do not include the results of the 
individual computations in this paper; however, extensive tabulations of these results 
are available from the authors on request. 

In selecting the algebraic form used to represent the resistance functions, we are 
guided by analytical results for three distinct regimes: (i) particles near the centre, 
b/R $ 1, (ii) small particles in the vicinity of the wall b/R - 1 ,  a/(R- b) < 1, and (iii) 
particles in the lubrication regime where the ratio of gap size to particle radius is small, 
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(R-b-a) /a  < 1. In region (i), the method of reflections and asymptotic analysis 
(Happel & Brenner 1965; Tozeren 1982, 1983) show that the resistance functions are 
even functions of b / R .  In region (ii), method of reflections calculations give resistance 
functions as power series in a/ (R-b) .  In region (iii), lubrication theory (described in 
the Appendix) yields the functional form and limiting behaviour of the resistance 
functions. Guided by these results, we proceed as follows. 

First, we define a dimensionless position variable p 
p = b/ (R - 4, (18) 

where ,8 = 0 for a particle at the centre of the cylinder and p = 1 for a particle in 
contact with the cylinder wall. 

Next, motivated by the behaviour in region (ii), we define a dimensionless variable 
p to characterize the distance of a small particle from the cylinder wall. We might define 
l /p  as the ratio 

-1 - a =‘[ 1 -p( 1 - 3 1  ; 
R - b  R 

however, it proves to be more effective to define l /p  as an even function of p to be 
consistent with the behaviour at small p. 

Thus we define 

Finally, we define a dimensionless variable S to characterize the gap size in the 
lubrication limit. One could employ the simple ratio of gap size to particle radius: 

however, we again prefer to employ an even function of p, and thus define 

s=--  :I( 1-- ;) (1-p).  

Note that S scales as the ratio of gapjparticle radius in the limit as p- 1, i.e. as the 
gap approaches zero. For convenience, define 6, to be the value of S evaluated at p = 0, 
which yields So E (R-a)/2a. 

With these specifications, we define the following approximating functions : 

1 1+p2 11. =--- 
6 so 
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We have chosen to represent the resistance functions as a single continuous function 
over the entire range 0 < /3 < 1. This decision dictates the form of the approximating 
functions ${. The first three terms $o, $2 are determined by the asymptotic 
behaviour at small p. The next two terms q+3, $4 take the form of the method of 
reflections contributions in region (ii) with the additional factors of /Iz to preserve the 
approximation in the small-p limit. The last three terms $6 ,  $6, $, are determined by 
lubrication theory as described in the Appendix. As 6 + 0, these terms scale as 6 In 6, In 6 
and 1 /S respectively. In these three cases, we have defined the function q+ by taking the 
appropriate lubrication result and subtracting the limiting behaviour for small /3. As 
before, this serves to preserve the character of the approximation at small p. 

Each of three components R,, R,, R, may now be expressed in the form 

while the resistance coefficient for a particle held fixed in a parabolic flow field is 
expressed 

The last term in (25) is equal to (b/R)' and is associated with the velocity profile for 
parabolic flow. 

The coefficients in (24) and (25) are chosen to satisfy known asymptotic limits and 
to minimize the errors in a least-squares approximation to the numerical data. 

With the definitions above, the primary results of this paper are listed in tables 3, 4 
and 5 . t  These tables give the coefficients ci and exponent m (for functions $3, $4) 

required to fit the numerically computed values of the resistance functions R. With the 
tabulated values, each resistance function is approximated with a maximum relative 
error of 1 x lop3. The error for the resistance functions R, is measured relative to the 
value of R, at the centreline, since the function R, itself approaches zero for a small 
particle approaching the cylinder wall. As noted above, up to 24 data points were 
employed in developing the least-squares approximations at each radius a/  R. These 
data were fit by an approximating function with significantly fewer degrees of freedom 
(from five to eight unknowns) guaranteeing a smooth representation of the data. 
Owing to the degree of overconstraint, the error at arbitrary /3 points will be well 
approximated by the error at the prescribed data points, i.e. < 1 x Note that 
fewer data points in /3 were required for the largest particle radius a /R  = 0.9. At this 
radius, the entire range 0 < p < 1 falls within the small-gap regime, and the resulting 
resistance function is significantly smoother than those for small a / R  which cover 
multiple asymptotic regimes. 

Certain coefficients in each table have physical significance in appropriate asymptotic 
limits, while others are merely empirical values employed to obtain an accurate fit for 
the numerical data. In each table, the coefficient cO represents the resistance for a 
particle at the centre of the cylinder. All values of c,, are accurate to a maximum error 
of 1 x The last coefficient in each table for R,, R,, R, represents the lubrication 
limit for a particle in near contact with the wall. These are the coefficients c, for the 1 /d 
asymptote for R, and cg for the lnd asymptote for R, and R,. For solid particles and 
for bubbles with h = 0, these coefficients are determined from the exact lubrication 

t Tables 4 and 5 are omitted for brevity. Copies of these tables may be obtained by contacting the 
Editorial Office or the authors. Electronic versions of all tables may be obtained by contacting the 
author (j-higdon@uiuc.edu) through electronic mail. 



Resistance functions for particles in cylindrical tubes 20 5 

results given in the Appendix. For droplets with h = 1, the coefficients c6 for R,, R, are 
taken from the Appendix, while the coefficient c, for R, is determined numerically from 
the least-squares approximation. The predicted value c, for droplets has an uncertainty 
of approximately 1 O/O.  

While the numerical convergence studies guarantee the precision of the computed 
results, it is worthwhile to compare with previous authors to eliminate the possibility 
of systematic or conceptual errors. Toward this goal, several cross-checks were made 
to confirm the reliability of our results. As a first test, the axisymmetric results (in the 
form of co) for R, and R, were compared with the results of Haberman (Happel & 
Brenner 1965, table 7-3.2, 7-3.3) for solid particles. Excellent agreement was found up 
to particle sizes a / R  = 0.50. For larger particles, Coutanceau & Thizon (1981) have 
pointed out the inaccuracy in Haberman’s results and given corrected values. Our 
results are in complete agreement with Coutanceau & Thizon (their table 3) for the 
resistance R, for solids, droplets and bubbles. 

For off-axis particles, we have compared our results with the theories of Hasimoto 
(1976) and Hetsroni et al. (1970). These authors give analytical results for the resistance 
functions for small particles a / R  << 1. To compare with these results, we fit power series 
to the numerical results at small values of a and b2 and extracted the limiting behaviour. 
Our results were compared with those of Hetsroni et al. (equation (36)) for R, and R, 
to order ( U / R ) ~ ,  (b/R)’. All coefficients agreed within 1 %  for solids, droplets and 
bubbles. This agreement is quite satisfying given that the higher coefficients are 
effectively determined from a second derivative of the numerical data in two separate 
variables, a and b. For velocities in the off-axial directions, our limiting results were 
compared with those of Hasimoto (1976 and Erratum), and excellent agreement was 
found (within 1 YO) with his coefficients for R,, R, and R, up to order (a /R)  and (b/R)’. 
Note that these comparisons are based on the extrapolations of our numerical results 
for small a and b. These extrapolated values are not identical to the coefficients in tables 
3-5. Those values are determined from a least-squares approximation to minimize the 
error in R over the entire range of /3, while the extrapolated coefficients are optimized 
for the limit a, b+0. 

For lubrication results, we have two independent checks of the present results. First, 
in the Appendix, we repeat the analysis of Cox (1974) for solid particles near a solid 
interface and extend these results to the case of fluid droplets near a solid boundary. 
In each case where analytical results are known, an extrapolation of the numerical 
results to zero gap size agrees with the analytical result to within 1 YO. Finally, for 
large particles a/R+ 1, we compare R, with the asymptotic theory of Bungay & 
Brenner (1973, equation 4.68). The asymptotic theory for R, and R, agrees with our 
results with an error of 0.3 YO at a / R  = 0.9 and 1.3 YO at a /R  = 0.8. Based on these 
comparisons and on the detailed tests which confirm the numerical convergence, we 
believe that our computations yield reliable results for the resistance functions for 
spherical bodies in cylindrical tubes. 

The final subject of this investigation is the extension of our tabulated results to 
particles of different radii. One approach would be to introduce more general 
approximation functions with two independent variables a / R  and p. All data for both 
variables could then be employed in a global least-squares approximation. Several 
attempts were made to develop approximation formula following this approach; 
however, these efforts were thwarted by the singular behaviour in the limiting cases, 
(a/R+O), (a/R+ l), ( p -  1 as 6+0), ( p - t  1 as 6-t 00). A successful two-dimensional 
least-squares approximation would require the division of the parameter space into 
several distinct subregions with different approximations in each region. Similarly, we 
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considered applying a least-squares polynomial approximation in a/  R to the 
coefficients ci(a/R)  ; however, this approach also requires domain subdivision for 
adequate performance. As an alternative to these procedures, we developed the 
interpolation approach described below. 

The first step in interpolating the tabulated results to other radii a / R  is the choice 
of an appropriate independent variable. We note that the resistance coefficients as 
functions of a / R  possess a singularity as a / R +  1, where the radius of the particle 
equals the radius of the tube. To improve the performance of the interpola- 
tion algorithms for a / R  < 1, we map the singularity to infinity by defining a new 
variable a :  

a = a/(R--a) (26) 

All interpolations are now performed using 01 as the independent variable. 
There are two obvious strategies for interpolating R to particles of different sizes. 

The first approach is to calculate the resistance function at tabulated values of a / R  
while holding /3 constant at the desired value. These values may then be interpolated 
to produce the final value for R. The second approach is to interpolate the values of the 
individual coefficients ci and to use the new coefficients together with $* to calculate R. 
The direct interpolation of resistance values has the advantage that these functions 
are well-defined physical quantities. The disadvantage is that the slope (aR/aa) is 
unbounded in the limit as a+ 0, /3- 1. The interpolation of the coefficients ci has the 
advantage that the singular slope (aR/aa) at small a is captured by the analytical form 
of the approximation functions $i. On the other hand, the values of the higher-order 
coefficients c, to c5 are relatively sensitive to small errors in the computed data 
especially at larger values of the radius. Given these trade-offs, we have performed a 
number of test computations to determine the optimal interpolation algorithm. 
Based on these tests, we recommend the following procedure. 

(i) For small particles with a / R  < 0.1, interpolate the coeficients ci using a four- 
point Lagrangian interpolant in the variable a based on the tabulated results for 
a / R  = 0.05 through 0.3. The resulting coefficients will yield resistance functions with 
a maximum relative error of 1 YO over the entire range 0 < /3 < 1. 

(ii) For larger particles with 0.1 < a / R  < 0.9, either the coeficients or the resistance 
values may be interpolated using a four-point Lagrangian interpolation in CL based on 
the four nearest tabulated values of a / R .  The direct interpolation of resistance values 
will yield higher accuracy at the larger particle sizes, but each approach yields results 
with a maximum relative error of 1 O/O for all particle sizes at all positions 0 < p < 1. 

With these extensions, the results of this paper provide simple analytical expressions 
for the resistance functions of spherical bodies in cylindrical tubes for all positions and 
all particle sizes from a / R  = 0 to 0.9. 

This work was supported in part by the National Science Foundation. G.P. 
Muldowney acknowledges the support of the Fannie and John Hertz Foundation. 
Computations on the SGI Challenge were performed at the National Center for 
Supercomputing Applications. 

Appendix 
In this Appendix, we present expressions for the asymptotic form of the resistance 

functions based on lubrication theory for two surfaces in near contact. The 
development follows that of Cox (1974) for solid particles with appropriate extensions 
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for free surface boundary conditions. Cox presents a formal development of the 
asymptotic analysis with careful attention to the ordering of the equations and the 
magnitude of the various terms. We assume that the reader is familiar with this analysis 
and give only a brief sketch of the leading-order results. 

Consider two surfaces in near contact such that the minimum distance between the 
surfaces is h,. One surface, designated the wall, is assumed to be rigid and motionless, 
while the other surface, designated the particle may be either fluid or solid. Assume 
that each surface has finite curvature at the point of minimum separation and that the 
curvature is much less than l/h,. Define a local Cartesian coordinate system with the 
origin on the wall at the point of nearest approach and the x-axis normal to the 
surfaces pointing toward the particle. (This choice of coordinates has each axis parallel 
to its counterpart in figure 1 but with the opposite sense.) 

Let the rigid boundary wall be represented locally by 

x = ?jJw = A,y2+Bwz2 

x = y,, = h ,+APy2+Bp2 .  

h (y , z )  = yp-yw = h0+Ay2+Bz2 

(A 1) 

(A 2) 

(A 3) 

and define a variable 6 = x-yw such that the gap between the surfaces occupies the 
region 0 < 5 < h. 

We assume that h, A ,  h, B << 1 and note that changes in y and z scale with 1/A and 
1/B while changes in x scale with h,. Under these circumstances, the lubrication 
approximation for the Stokes equations leads to the simplified form 

and the particle surface (whether fluid or solid) represented by 

Define h( y ,  z )  as the gap between the walls 

We consider the four separate cases of squeezing flow and of shearing flow of rigid 
particles and shear free fluid particles respectively. Consider first a squeezing flow for 
a rigid particle. The no-slip boundary condition on the wall is u = (O,O, 0) at 5 = 0, 
while the no-slip condition on the particle is u = (- U,  0,O) at < = h. 

Integrating the Stokes equations twice with respect to x and employing the boundary 
conditions yields 

The continuity equation, div u = 0, may be integrated with respect to x and expressions 
(A 5 )  substituted for velocity components u and w. Integrating the result from 6 = 0 to 
h yields an equation for p( y, z )  : 

V*(h3Vp)  = - 12pU, (A 6) 

where V is the two-dimensional gradient operator in the variables y and z .  This is Cox’s 
equation (3.9). 

The solution of (A 6) is of the form p = k , /h2 .  Substituting for p and solving for the 
coefficient yields 

3pu 1 
p = - - - -  A+Bh2’  
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The net force on the 
leading order gives 

J .  J .  L. Higdon and G. P. Muldowney 

particle surface due to the pressure is F = S,-pndS which to 

For a sphere of radius a near the wall of a cylinder of radius R, we have 

1 1  1 
2a 2R'  2a 

A = - - -  B = - .  

With these substitutions, the dimensionless force may be written 

This result (minus the factor a / h ,  which is absorbed into ~ , )  provides the values for 
the coefficients c, in table 3 (a) .  It is equivalent to Cox, equation (7.12) coefficient K33. 

Next, we consider the squeezing flow of a fluid particle with zero viscosity. In place 
of the no-slip boundary condition, we have no-penetration and zero-shear boundary 
conditions on the bubble. Proceeding as before, we solve for the pressure, obtaining 

which is exactly $ of the result for rigid surfaces. 
This result might have been inferred from symmetry arguments based on two rigid 

particles approaching with a gap twice that of the bubble approaching a rigid surface. 
Evaluating the integrals for the pressure force, we find the dimensionless force: 

Here we have non-dimensionalized with respect to 4npaU which is the appropriate 
factor for a bubble with zero viscosity. This result provides the values for the 
coefficients c, in table 5(a).  

It is important to note that the solution (A 12) applies for the problem for a fluid 
bubble approaching a rigid surface. The case of two fluid bodies approaching contact 
yields a dramatically different result, as shown by Davis, Schonberg & Rallison (1989) 
for the axisymmetric case involving two spherical droplets. The simple results (A 7) and 
(A 11) for rigid particles and shear-free particles cannot be easily extended to droplets 
with finite viscosity. In this latter case, one must employ numerical methods to solve 
an integral equation for the flow interior to the fluid droplet. A discussion of this 
procedure for the case of axisymmetric bodies is given by Davis et al. In the present 
circumstances, we simply employ the spectral boundary element algorithm to determine 
the resistance functions. The extrapolated results for a liquid droplet with viscosity 
ratio h = 1 yield the values of c, in table 4(a) .  

We now turn our attention to the problem of shearing flows for rigid particles. We 
assume that the particle velocity at the centre of the sphere is u = (0, V,  W )  and the 
angular velocity is l2 = (0, O,, QJ. The particle velocity at the contact point (ho, 0,O) 
is then (0, p, W )  = (0, V -  SZ, a,  W+ O2 a). The no-slip boundary condition on the 
stationary wall remains as before; however, to leading order, the no-slip condition on 
the particle now becomes u = (SZ, z-SZ3y, f ,  @) at 5 = h. 
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Proceeding as before, we obtain a lubrication equation for p which yields solutions 
of the form 

p = ( k 2 y + k , z ) / h 2 .  (A 13)  

The no-slip boundary conditions yield values for the coefficients k, and k,  in terms 
of V ,  W, Q2 and 52,. Evaluating the force and torque on the particle, we employ the 
condition of zero torque to solve for 52, and 52,. The final results for the force on a 
torque-free rigid particle are 

These equations provide the values for the coefficients c, in tables 3(b) and 3(c) 
respectively. 

Next, we consider the shearing motion of a zero-viscosity bubble. The no- 
penetration and shear-free boundary conditions apply as for the squeezing motion with 
the velocity now given by u = (0, V ,  W ) .  The solution for p is of the form (A 13) with 
different values for the coefficients k ,  and k,. Evaluating the pressure integrals gives the 
final expressions for the force on the bubble. In dimensionless form, we have 

Ry=-=- 'Y ' (  ~ ) ( A r z l n ( i ) ,  

)(")"'ln(i). 

4xpaV 2 5R-3a R-a  

_ -  ~ R, = ~ 4 - 3 (  
4npaW 2 5R-2a R-a  

These equations 
respectively. 

provide the values for the coefficients c, in tables 5(b) and 5(c) 

The shearing motion of a viscous drop with h = 1 is closely related to that of the 
zero-viscosity bubble. In the case of a droplet, the shear stress is not zero everywhere, 
but the average shear stress must be zero in the lubrication region to satisfy the 
condition of zero torque on the body. Under these conditions, the lubrication force on 
the droplet is extremely close to that of the zero-viscosity bubble. Extrapolations based 
on the numerical data indicate the coefficients of the In (a/h,) term agree to within 
approximately 1 %. Given this agreement, we employ the analytical results for the 
shear-free bubble in determining the asymptotic coefficients for the droplets with 
A =  1 .  

With the appropriate non-dimensionalization, this gives 

These equations provide the values for the coefficients c, in tables 4(b)  and 4(c) 
respectively. 
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